Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 106(4): e1775-e1792, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33340048

RESUMO

CONTEXT: The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE: This work aimed to investigate the role of CaSR in human spermatozoa. METHODS: We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS: CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION: CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.


Assuntos
Bicarbonatos/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Espermatozoides/metabolismo , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Adulto , Bicarbonatos/farmacologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Estudos de Casos e Controles , Feminino , Humanos , Hipercalcemia/congênito , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Hipoparatireoidismo/congênito , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Hipoparatireoidismo/patologia , Rim/metabolismo , Rim/patologia , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Mutação , Receptores de Detecção de Cálcio/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
2.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160303

RESUMO

CONTEXT: Several heterozygous loss-of-function mutations in the calcium-sensing receptor gene (CASR) leading to elevated ionized serum calcium and familial hypocalciuric hypercalcemia 1 (FHH1) have been characterized. Few mutations are not pathogenic, and previous studies suggested that the Q459R mutation does not result in an FHH1 phenotype. OBJECTIVE: We identified a family with a heterozygous CASR Q459R mutation and characterized their calcium homeostasis and the pathophysiological mechanisms of a homozygous and heterozygous Q459R mutation in vitro. DESIGN: The index patient and her family had clinical, biochemical, and genetic analyses performed. In vitro functional characterization of homozygous and heterozygous (Q459R) mutations was conducted by determining CaSR cell-surface expression and inositol monophosphate (IP1) signaling in transiently transfected human embryonic kidney 293A (HEK293A) cells. RESULTS: All 3 heterozygous carriers had mild asymptomatic hypercalcemia, hypocalciuria, and 2 had elevated serum parathyroid hormone (PTH). In vitro characterization in HEK293A cells revealed that CASR Q459R is a loss-of-function mutation with no impact on cell-surface expression. Cells with the homozygous Q459R genotype had significantly reduced calcium potency of IP1 signaling compared to wild type, whereas the heterozygous Q459R also had lower calcium potency albeit not significantly different from wild type. CONCLUSION: A loss-of-function Q459R mutation in CASR in a family caused FHH1 characterized by elevated ionized calcium and PTH and low calcium excretion. The marked presence of CaSR at the membrane and inhibition of IP1 signaling in vitro suggest that calcimimetics may be functional in patients with this mutation, which seems to be a mild loss-of-function mutation associated with autosomal dominant transmission of FHH1.


Assuntos
Cálcio/metabolismo , Heterozigoto , Hipercalcemia/congênito , Mutação , Receptores de Detecção de Cálcio/genética , Adulto , Sequência de Aminoácidos , Biomarcadores/análise , Feminino , Células HEK293 , Humanos , Hipercalcemia/etiologia , Hipercalcemia/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Prognóstico , Adulto Jovem
3.
Adv Exp Med Biol ; 1131: 1031-1063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646544

RESUMO

The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a key role in calcium homeostasis, by sensing free calcium levels in blood and regulating parathyroid hormone secretion in response. The CaSR is highly expressed in parathyroid gland and kidney where its role is well characterised, but also in other tissues where its function remains to be determined. The CaSR can be activated by a variety of endogenous ligands, as well as by synthetic modulators such as Cinacalcet, used in the clinic to treat secondary hyperparathyroidism in patients with chronic kidney disease. The CaSR couples to multiple G proteins, in a tissue-specific manner, activating several signalling pathways and thus regulating diverse intracellular events. The multifaceted nature of this receptor makes it a valuable therapeutic target for calciotropic and non-calciotropic diseases. It is therefore essential to understand the complexity behind the pharmacology, trafficking, and signalling characteristics of this receptor. This review provides an overview of the latest knowledge about the CaSR and discusses future hot topics in this field.


Assuntos
Cálcio , Hiperparatireoidismo Secundário , Receptores de Detecção de Cálcio , Cálcio/metabolismo , Cinacalcete/uso terapêutico , Humanos , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Rim/metabolismo , Glândulas Paratireoides/metabolismo , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Insuficiência Renal Crônica/complicações
4.
Mol Pharmacol ; 96(4): 463-474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399503

RESUMO

G protein-coupled receptor (GPCR) internalization is crucial for the termination of GPCR activity, and in some cases is associated with G protein-independent signaling and endosomal receptor signaling. To date, internalization has been studied in great detail for class A GPCRs; whereas it is not well established to what extent the observations can be generalized to class C GPCRs, including the extracellular calcium-sensing receptor (CaSR). The CaSR is a prototypical class C GPCR that maintains stable blood calcium (Ca2+) levels by sensing minute changes in extracellular free Ca2+ It is thus necessary that the activity of the CaSR is tightly regulated, even while continuously being exposed to its endogenous agonist. Previous studies have used overexpression of intracellular proteins involved in GPCR trafficking, pathway inhibitors, and cell-surface expression or functional desensitization as indirect measures to investigate CaSR internalization. However, there is no general consensus on the processes involved, and the mechanism of CaSR internalization remains poorly understood. The current study provides new insights into the internalization mechanism of the CaSR. We have used a state-of-the-art time-resolved fluorescence resonance energy transfer-based internalization assay to directly measure CaSR internalization in real-time. We demonstrate that the CaSR displays both constitutive and concentration-dependent Ca2+-mediated internalization. For the first time, we conclusively show that CaSR internalization is sensitive to immediate positive and negative modulation by the CaSR-specific allosteric modulators N-(3-[2-chlorophenyl]propyl)-(R)-α-methyl-3-methoxybenzylamine (NPS R-568) and 2-chloro-6-[(2R)-2-hydroxy-3-[(2-methyl-1-naphthalen-2-ylpropan-2-yl)amino]propoxy]benzonitrile (NPS 2143), respectively. In addition, we provide compelling evidence that CaSR internalization is ß-arrestin-dependent while interestingly being largely independent of Gq/11 and Gi/o protein signaling. SIGNIFICANCE STATEMENT: A novel highly efficient cell-based real-time internalization assay to show that calcium-sensing receptor (CaSR) internalization is ß-arrestin-dependent and sensitive to modulation by allosteric ligands.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Receptores de Detecção de Cálcio/metabolismo , beta-Arrestinas/metabolismo , Regulação Alostérica , Cálcio/sangue , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Ligantes , Mutação , Naftalenos/farmacologia , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Transporte Proteico , Receptores de Detecção de Cálcio/genética
5.
FASEB J ; 30(5): 1836-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26823453

RESUMO

The adhesion G protein-coupled receptors [ADGRs/class B2 G protein-coupled receptors (GPCRs)] constitute an ancient family of GPCRs that have recently been demonstrated to play important roles in cellular and developmental processes. Here, we describe a first insight into the structure-function relationship of ADGRs using the family member ADGR subfamily G member 4 (ADGRG4)/GPR112 as a model receptor. In a bioinformatics approach, we compared conserved, functional elements of the well-characterized class A and class B1 secretin-like GPCRs with the ADGRs. We identified several potential equivalent motifs and subjected those to mutational analysis. The importance of the mutated residues was evaluated by examining their effect on the high constitutive activity of the N-terminally truncated ADGRG4/GPR112 in a 1-receptor-1-G protein Saccharomyces cerevisiae screening system and was further confirmed in a transfected mammalian human embryonic kidney 293 cell line. We evaluated the results in light of the crystal structures of the class A adenosine A2A receptor and the class B1 corticotropin-releasing factor receptor 1. ADGRG4 proved to have functionally important motifs resembling class A, class B, and combined elements, but also a unique highly conserved ADGR motif (H3.33). Given the high conservation of these motifs and residues across the adhesion GPCR family, it can be assumed that these are general elements of ADGR function.-Peeters, M. C., Mos, I., Lenselink, E. B., Lucchesi, M., IJzerman, A. P., Schwartz, T. W. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Mutação , Conformação Proteica , Domínios Proteicos , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...